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Abstract

Notes for a talk I gave. I apologise for the errors.

Definition 1 A space X is said to be exponentiable if the functor

Top
(−)×X−−−−→ Top, Z 7→ Z ×X (0.1)

has a right adjoint RX . �

We write C(X, Y ) for the set of continuous maps X → Y . If X is exponentiable, then for
any spaces Y, Z there are natural bijections C(Z ×X, Y ) ∼= C(Z,RX(Y )). Taking Z = ∗ we
obtain C(X, Y ) = RX(Y ) (as sets). Thus RX(Y ) is obtained by placing a suitable topology
on C(X, Y ). When given a topology τ on this set we will write Cτ (X, Y ) for the resulting
space.

Definition 2 Let X, Y be spaces and τ a toplogy on C(X, Y ). The topology τ is said to be;

(1) splitting1 if for every space Z and every continuous f : Z × X → Y , the adjoint
f# : Z → Cτ (X, Y ) is continuous.

(2) cosplitting2 if for every space Z and every continuous f : Z → Cτ (X, Y ), the adjoint
f [ : Z ×X → Y is continuous.

(3) exponential3 if it is both splitting and cosplitting. �

Example 0.1 (1) The indiscrete topology on C(X, Y ) is always splitting, while the dis-
crete topology is always cosplitting. In particular both splitting and cosplitting topolo-
gies always exist.

1Engleking calls this proper. Escardó-Heckman call this weak.
2Engelking calls this admissible. Goubault-Larrecq and Dugunji call this conjoining. Kelly and Nagata

call this jointly continuous. Escardó-Heckman call this strong.
3Engelking calls this acceptable. Escardó-Heckman call this even.
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(2) Cpw(X, Y ) denotes the topology of pointwise convergence. This topology is nothing
but the subspace topology inherited from the inclusion C(X, Y ) ⊆

∏
X Y . To be

consistent with later notation we write its subbasic opens as 〈x, V 〉 = {f ∈ Cpw(X, Y ) |
x ∈ f−1(V )}, where x ∈ X and V ⊆ Y is open. The pointwise topology is splitting.
It is almost never cosplitting: a map Z → Cpw(X, Y ) is continuous if and only if its
adjoint Z×X → Y is continuous in each variable separately. Essentially the only cases
to note are when Y is indiscrete or X is a point.

(3) We write Cko(X, Y ) for the compact-open topology and let 〈K,V 〉 = {f ∈ C(X, Y ) |
K ⊆ f−1(V )}, with K ⊆ X compact and V ⊆ Y open, denote its subbasic open sets.
The compact-open topology is splitting. If X is locally compact, then Cko(X, Y ) is
cosplitting and hence exponential. We show below the converse: if X is a fixed Haus-
dorff space and Cko(X, Y ) is exponential for each space Y , then X is locally compact.
In fact, if X is Tychonoff and Cko(X,R) is exponential, then X is locally compact.
Case in point, Q is not locally compact, and the compact-open topology on Cko(Q,R)
is not cosplitting. �

Proposition 0.1 For spaces X, Y , a topology τ on C(X, Y ) is cosplitting if and only if the
evaluation map ev : Cτ (X, Y )×X → Y is continuous.

Proof The evaluation is adjoint to the identity Cτ (X, Y ) → Cτ (X, Y ). If τ is cosplitting,
then this is continuous. Conversely, if ev is continuous and a continuous f : Z → Cτ (X, Y )

is given, then f# is the continuous function f# : Z ×X f×1−−→ Cτ (X, Y )×X ev−→ Y .

Proposition 0.2 Let X, Y be spaces and σ, τ topologies on C(X, Y ).

(1) If τ is splitting and σ ⊆ τ , then σ is splitting. i.e. every topology weaker than a
splitting toplogy is splitting.

(2) If τ is cosplitting and τ ⊆ σ, then σ is cosplitting. i.e. every topology stronger than a
cosplitting topology is cosplitting.

(3) If σ is splitting and τ is cosplitting, then σ ⊆ τ . i.e. every splitting topology is weaker
than every cosplitting topology.

It follows that there is always a largest splitting topology on C(X, Y ). Moreover there exists at
most one exponential topology on C(X, Y ). When the exponential topology exists it coincides
with the largest splitting topology, and is in this case also the smallest cosplitting topology.

Proof (1) and (2) are immediate and the last statements are a consequence of (3) and our
previous observations. To prove (3) check that the chain of adjunctions

C(Cσ(X, Y ), Cσ(X, Y ))
#←− C(Cσ(X, Y )×X, Y )

[−→ C(Cσ(X, Y ), Cτ (X, Y )) (0.2)

takes the identity on Cσ(X, Y ) to the comparison map Cσ(X, Y ) → Cτ (X, Y ) which is
induced by it. Since this map is continuous we get the statement.
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A first application: starting with a Hausdorff Y we have a Hausdorff product topology on
Cpw(X, Y ). Since every cosplitting topology contains the pointwise topology, each cosplitting
topology is Hausdorff. The same applies to any splitting topologies which contain it (eg. the
compact-open topology).

Definition 3 When the exponential topology on C(X, Y ) exists we will write Y X for the
corresponding space. Since the exponential topology is unique this notation is meaningful. �

Proposition 0.3 Let X, Y, Z be spaces. The following statements hold.

(1) Let f : Y → Z be continuous. If Cσ(X, Y ) carries a cosplitting topology and Cτ (X,Z)
carries a splitting topology, then the induced map f∗ : Cσ(X, Y )→ Cτ (X,Z) is contin-
uous.

(2) Let g : X → Y be continuous. If Cσ(Y, Z) carries a cosplitting topology and Cτ (X,Z)
carries a splitting topology, then the induced map g∗ : Cσ(Y, Z)→ Cτ (X,Z) is contin-
uous.

Proof (1) The map f∗ is the adjoint of the continuous map Cσ(X, Y )×X ev−→ Y
f−→ Z. (2)

The map g∗ is adjoint to the composition Cσ(Y, Z)×X 1×g−−→ Cα(Y, Z)× Y ev−→ Z.

Remark Similar methods establish the following.

(1) Assume that Cσ(X, Y ), Cτ (Y, Z) carry cosplitting topologies and Cρ(X,Z) carries a
splitting topology. Then the composition Cτ (Y, Z)× Cσ(X, Y )→ Cρ(X,Z) is contin-
uous.

(2) If Cτ (Y, Z) and Cσ(X,Cτ (Y, Z)) carry cosplitting topologies and Cρ(X × Y, Z) car-
ries a splitting topology, then the canonical map Cσ(X,Cτ (Y, Z)) → Cρ(X × Y, Z) is
continuous.

(3) If Cρ(X × Y, Z) carries a cosplitting topology, and Cτ (Y, Z), Cσ(X,Cτ (Y, Z)) carry
splitting topologies, then the canonical map Cρ(X × Y, Z) → Cσ(X,Cτ (Y, Z)) is con-
tinuous.

(4) If Cτ (X, Y ) is splitting, then the constants embedding Y → Cτ (X, Y ) is continuous.
�

Corollary 0.4 A space X is exponentiable if and only if the exponential object Y X exists
for each space Y .

The point is that while a necessary condition for X to be exponentiable is that exponential
topologies exist on C(X, Y ) for all Y , it was not clear before how these topologies would
assemble so as to make the assignment Y 7→ Y X functorial. As it turns out, the exponential
topology takes care of itself.

Let E ⊆ Top denote the full subcategory on the exponential spaces. It contains the empty
space and the one-point space. Moreover it has finite products and all coproducts. On the
other hand it does not have infinite products (consider the Baire space Nω ∼= P), and it is
not closed under passing to subspaces (consider Q ⊆ R) or quotients (consider R/N). The
following is a slightly sharper statement of the last corollary.
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Corollary 0.5 The exponential defines a functor Eop × Top→ Top, (X, Y ) 7→ Y X .

Example 0.2 (1) The Isbell topology CIs(X, Y ) is splitting. Its definition follows. De-
note by OX the lattice of open subsets of X and call a subset U ⊆ OX Scott open if (i)
whenever U ∈ U and U ⊆ V ∈ OX , we have V ∈ U, and (ii) given any family Ui ∈ OX ,
i ∈ I, with

⋃
I Ui ∈ U, there are finitely many indices i1, . . . , in such that Ui1∪· · ·∪Uin ∈

U. The sets 〈U, V 〉 = {f ∈ C(X, Y ) | f−1(V ) ∈ U} then form a subbase for the Isbell
topology as U runs over all Scott-open subsets of OX and V ⊆ Y runs over all open sub-
sets.
The Isbell topology contains the compact-open topology. For if K ⊆ X is com-
pact, then UK = {U ∈ OX | K ⊆ U} is Scott-open and 〈UK , V 〉 = 〈K,V 〉. To
see that the Isbell topology is splitting take f : Z × X → Y and consider its adjoint
f̃ : Z → CIs(X, Y ). If f̃(z) ∈ 〈U, V 〉, then there is U ∈ U such that f̃(z)(U) =
f(z × U) ⊆ V (use the fact that U is upwards closed). For each x ∈ U there is a open
set Ux ⊆ U containing x and a neighbourhood Tx ⊆ Z of z such that f(Tx ×Ux) ⊆ V .
Since

⋃
Ux = U ∈ U there are a finite number of points x1, . . . , xn ∈ U such that

U0 = Ux1 ∪ · · · ∪ Uxn ∈ U. Then z ∈ T0 =
⋂n
i=1 Txi and f(T0 × U0) = f̃(T0)(U0) ⊆ V .

That is f̃(T0) ⊆ 〈U, V 〉. Thus f̃ is continuous.

(2) If (Y, d) is a metric space, then the topology of uniform convergence on C(X, Y )
is cosplitting. It is not in general splitting. The topology itself is that defined by

the metric d̂(f, g) = supx∈X

(
d(f(x),g(x))

1+d(f(x),g(x))

)
. To illustrate take the multiplication µ :

R× R→ R, (s, t) 7→ s · t. The adjoint satisfies d̂(µ̃(s), µ̃(s′)) = supt∈R

(
|s−s′||t|

1+|s−s′||t|

)
= 1

for s 6= s′, and in particular is not continuous. The uniform topology always contains
the compact-open toplogy. For compact domains the two topologies coincide, but even
for the locally compact R they are different, since Cko(R,R) is exponential. Note that
Cko(R,R) is even a metric topology (R is hemicompact).

(3) Define the natural topology on C(X, Y ) to be the initial topology induced by the
family of all functions Z → C(X, Y ) which are adjoint to continuous maps Z×X → Y .
Let CNat(X, Y ) be the resulting space. The natural topology is evidently splitting. If σ
is any topology on C(X, Y ), then the identity CNat(X, Y )→ Cσ(X, Y ) will be contin-
uous if and only each composite Z → CNat(X, Y ) → Cσ(X, Y ) is continuous for each
map Z → CNat(X, Y ) adjoint to a continuous map Z ×X → Y . This will be the case
if and only σ is splitting. Thus the natural topology on C(X, Y ) is the finest splitting
topology. It also admits a second description: the natural topology on C(X, Y ) is
the intersection of all cosplitting topologies. To see this let P ⊆ CNat(X, Y ) be any
non-closed subset and let (fi)I ⊆ P be a net converging (necessarily continuously) to
a function f 6∈ P . Let σ(f) be the topology on C(X, Y ) such that U ⊆ C(X, Y ) is
open if and only if either (i) f 6∈ U , or (ii) fi ∈ U for all sufficiently large i. The claim
is that σ(f) is a cosplitting topology in which fi → f . This will show that P is not
open in

⋂
(cosplitting topologies) and hence that the natural topology is no stronger

than this topology (it is already weaker). Details are left to the reader.

(4) Say that a net (fi)I ⊆ C(X, Y ) converges evenly to f if for each open V ⊆ Y , each
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point y ∈ V has a neighbourhood Wy ⊆ y such that f−1(Wy) ⊆ f−1i (V ) for sufficiently
large i. The topology of even convergence Cev(X, Y ) is the topology generated
by this convergence structure (i.e. U ⊆ Cev(X, Y ) is open if and only if every net
which converges evenly to a function in U is eventually in U). The topology of even
convergence is our sole example of a cosplitting topology and will play no serious rôle
in the sequel. �

In the third example above we see that in general there is no coarsest cosplitting topology.
For instance C(Rω, I) carries no coarsest cosplitting topology. In any case we have a sequence
of increasingly fine topologies on C(X, Y ).

pointwise ⊆ compact-open ⊆ Isbell ⊆ natural ⊆ even convergence. (0.3)

If Y is Hausdorff, then each of these topologies is Hausdorff. In general each inclusion is
strict. The first four are splitting, while the last is cosplitting. If any exponential topology
exists, then it is the natural topology (in fact in this case the natural and Isbell topologies
coincide, but this is not obvious). If X is locally compact, then the the compact-open
topology is exponential, and hence coincides with the Isbell and natural topologies. Of
course many topologies exist which are neither splitting nor cosplitting, and splitting and
cosplitting topologies exist which are not comparable with the topologies in the above list.

Example 0.3 (1) Recall that the Baire space Nω is homemorphic to the irrationals P in
their subspace topology inherited from R. Thus Nω is not locally compact. It’s known
that the compact-open and Isbell topologies agree on C(Nω,N), and both are strictly
weaker than the natural topology.

(2) Let X = N ∪ {∞}. Topologise it by declaring a subset U ⊆ X open iff ∞ ∈ U .
Then X is locally compact and consequently the compact-open, Isbell, and natural
topologies on C(X, Y ) all coincide and are exponentiable for any space Y . On the
other hand all compact subsets of X are finite, so the compact-open and pointwise
topologies coincide. Still, the space is very badly behaved. It fails to be T1, and in fact
any map from X to a T1 space is constant (f(X) = f(∞) ⊆ f(∞)). Thus whenever
Y is T1, the exponential Y X is homeomorphic to Y .

Remark There is an alternative approach to the above results which uses convergence
methods. Say that a net (fi)I ⊆ C(X, Y ) converges continuously to f ∈ C(X, Y ) if for
each convergent net (xj)J → x in X, the net (fi(xj))I×J ⊆ Y converges to f(x). Now let σ
be a topology on C(X, Y ). Then:

• σ is splitting if and only if continuous convergence implies σ-convergence.

• σ is cosplitting if and only if σ-convergence implies continuous convergence.

• σ is exponential if and only if σ-convergence is equivalent to continuous convergence.

The natural topology coincides with the topology generated by the continuously convergent
nets. Thus an exponential topology exists when convergence in the natural topology is
exactly the continuous convergence. �
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Having set out the preliminaries, in the remainder of the talk we will answer the original
question by establishing the following.

Theorem 0.6 The following statements about a given space X are equivalent.

(1) X is exponentiable.

(2) An exponential topology exists on C(X, Y ) for each space Y .

(3) X is core compact.

(4) An exponential topology exists on C(X, S), where S is the Sierpinski space.

(5) If q : Y → Z is a quotient map, then q × idX : Y ×X → Z ×X is a quotient map.

The equivalence of the first two points has already been established. We will explain the third
and fourth points below, and will carefully define the terms as we come to them. The last
point we can explain now: the special adjoint functor theorem guarantees that the functor
(−) × X will have a right adjoint if and only if it preserves all colimits (recall that Top is
cocomplete, co-well-powered and has a seperating object. See Borceux Vol. 1 Th. 3.3.4).
In turn (−) × X will preserve all colimits if and only if it preserves all coends, if and only
if it preserves coproducts and coequalisers, if and only if it preserves coproducts and takes
quotient maps to quotient maps.

A direct proof runs by testing the universal property of the quotient map. Assuming that

X is exponentiable, a composite Y ×X q×idX−−−→ Z ×X h−→ P will be continuous if and only if

Y
q−→ Z

h̃−→ PX is continuous if and only if h̃ is continuous if and only if h is continuous. A
third proof is also possible using the definition of core compactness.

Definition 4 Let X be a space.

(1) Given subsets A,B ⊆ X, it is said that A is well below B4, written A b B, if A ⊆ B
and if from each open covering of B one can extract a finite subcovering of A.

(2) The space X is said to be core compact if whenever x ∈ V ∈ OX , there is x ∈ U ∈ OX
with U b V . �

Observe that A is compact if and only if A b A. More generally, if A b B and A is closed,
then A is compact. The closedness is necessary, for instance, as (0, 1) b [0, 1]. In fact, if
B is compact, then every subset A ⊆ B is well below B. Note also that A b B ⊆ C b D
implies that A b D.

Proposition 0.7 Each locally compact space is core compact. A regular or Hausdorff space
is core compact if and only if it is locally compact.

4or bounded in B
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Proof (1) If X is locally compact and x ∈ V ∈ OX , then there is compact K ⊆ X with
x ∈ K◦ ⊆ K ⊆ V . Clearly K◦ b V . (2) Necessity is by the first part, so let X be core
compact. We first assume that X is regular. Then whenever x ∈ U b V , due to regularity,
there is a closed neighbourhood C of x with x ∈ C ⊆ U . This gives C b V , and hence
implies that C is compact.

Now drop the regularity assumption and assume that X is core compact and Hausdorff.
We will show that X is regular. For this it will suffice to show that each point has a local
base of closed neighbourhoods, and the assmumption of core compactness reduces this to
showing that U ⊆ V whenever U b V are given open sets. For this suppose U 6⊆ V . That
is, that there is a point y ∈ X \ V , each of whose neighbourhoods meets U . Then because
X is Hausdorff, for each x ∈ V there are disjoint open sets Px, Qx with x ∈ Px ⊆ V and
y ∈ Qx. Because U b V , there is thus a finite number of points x1, . . . , xn ∈ V such that
U ⊆ P =

⋃n
i=1 Pxi . On the other hand Q =

⋂n
i=1Qxi is a neighbourhood of y which is

disjoint from P . Hence there is a contradiction, so it must be that U ⊆ V .

On the other hand not every core compact space is locally compact.

Example 0.4 Let Y = I × [0, 1) be given the topology whose open sets are of the form
Uf = {(x, y) | y < f(x)}, where f : I → I is a lower semicontinuous function. Fix a dense
subset A ⊆ I with the property that A ∩ U is not a Borel set for any nonempty open U ⊆ I.
Now let X = {(x, y) ∈ Y | x ∈ A ⇒ y ∈ [0, 1) ∩Q, x 6∈ A ⇒ y ∈ [0, 1) ∩ P}. Then X is a
second-countable core compact T0 space. However every compact subset of X has an empty
interior, so X is not even close to being locally compact. �

We show next that every core compact space is exponentiable.

Lemma 0.8 The following statements about a space X hold.

(1) If Ai b Bi ⊂ X are subsets for i = 1, 2, then A1 ∪ A2 b B1 ∪B2.

(2) If X is core compact and U, V ⊆ X are open sets with U b V , then there is an open
set W ⊆ X with U b W b V .

Proof (1) Clear. (2) For each x ∈ V iteratively choose open W̃x,Wx ⊆ X such that

x ∈ W̃x b Wx b V . The family {W̃x}x∈V covers V , so there are finitely many points
x1, . . . , xn ∈ V such that U ⊆

⋃n
i=1Wxi . Using the first part of the lemma we can now write

U ⊂
⋃n
i=1 W̃xi b

⋃n
i=1Wxi b V , so putting W =

⋃n
i=1Wxi we have U b W b V .

Proposition 0.9 If X is core compact, then for any space Y the Isbell topology on C(X, Y )
is exponential.

Proof Since the Isbell topology is always splitting it will suffice to show the evaluation
map CIs(X, Y ) × X → Y is continuous. So let (f, x) ∈ CIs(X, Y ) × X and assume that
ev(f, x) = f(x) ∈ V ⊆ Y where V is open. Because X is core compact there is an open
U ⊆ X with x ∈ U b f−1(V ). Let U = {W ∈ OX | U b W}. The claim is that this set is
Scott-open, and that ev(〈U, V 〉 × U) ⊆ V . Because (f, x) ∈ 〈U, V 〉 × U this implies that ev
is continuous at (f, x).
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The second part of the claim is immediate; since 〈U, V 〉 = {g ∈ CIs(X, Y ) | U b g−1(V )},
if g ∈ 〈U, V 〉, then g(U) ⊆ V . As for the first part, U is nonempty since it contains f−1(V ),
and it is clearly upwards closed. Let {Wi}I ⊆ OX be a family of open subsets with

⋃
IWi ∈

U. We have U b
⋃
IWi, so by Lemma 0.8 there is an open set P with U b P b

⋃
IWi.

It follows that there is a finite family Wi1 , . . . ,Win such that U b P ⊂
⋃n
k=1Wik . Hence⋃n

k=1Wik ∈ U, implying that U is Scott-open.

Remark There is another topology on C(X, Y ) which is directly associated with the notion
of core compactness. It is called the core-open topology and is generated by the subbase
consisting of the sets 〈U ⇓ V 〉 = {f ∈ C(X, Y ) | U b f−1(V )}, where U ⊆ X and
V ⊆ Y are open. The core-open topology contains the compact-open topology, but need
not be comparable with the Isbell or natural topologies. In general it is neither splitting
nor cosplitting. If X is core compact, however, then the core-open topology agrees with the
Isbell topology (cf. the proof of Th. 0.9) and is thus the unique exponential topology on
C(X, Y ). Of course in this case it coincides with the natural topology. Similarly, if X is
locally compact, then the core-open and compact-open topologies are one and the same and
agree with the other two mentioned topologies. �

We return now to our main theorem 0.6. We have shown the sufficiency of the third claim.
Necessity will follow by understanding the fourth. For this we introduce the Sierpinski dyad,
which is the space S = {0, 1} with two points and topology OS = {∅, S, {1}}. Then given

any space X there is a bijection C(X, S)
∼=−→ OX , f 7→ f−1(1). The inverse sends U ∈ OX to

its characteristic function

χU : x 7→

{
1 x ∈ U
0 x 6∈ U.

(0.4)

Using this association, a high brow approach to the exponentiation problem reduces it to the
existence of certain topologies on the lattice of open sets OX . One shows that a necessary
condition for X to be exponential is that OX is a continuous lattice. As it turns out this is
exactly the condition that X be core compact. We will not pursue this path, preferring a
cleaner topological approach using the material established above.

Fix a space X. For a subset A ⊆ X, as before we write 〈A, {1}〉 = {f ∈ C(X, S) | A ⊆
f−1(1)}. In terms of the lattice of open sets this is the subset UA = {U ∈ OX | A ⊆ U}.
Suppose given a family {Wi ⊆ X}I of open subsets. Write W =

⋃
IWi and define a topology

ω on C(X, S) as follows. If U 6= W , then χU is isolated. The basic open neighbourhoods of
χW are the sets of the form 〈Vi1 ∪ · · ·∪Vin , {1}〉, where {i1, . . . , in} ⊆ I is a finite subset and
Vik ⊆ Wik is an open subset for each k = 1, . . . , n.

Lemma 0.10 The topology ω on C(X, S) is cosplitting.

Proof Consider the evaluation map ev : Cω(X, S) × X → S. Its continuity is clear at all
points except those of the form (χW , x). If χW (x) = 1, then x ∈ W =

⋃
IWi, and there is

i ∈ I such that x ∈ Wi. Then (χW , x) ∈ 〈Wi, {1}〉×Wi and ev(〈Wi, {1}〉×Wi) = {1}.

Proposition 0.11 Let X be a space. Assume that the set C(X, S) carries an exponential
topology σ. Then X is core compact.
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Proof Let x ∈ U ∈ OX . Then the continuity of the evaluation ev : Cσ(X, S) × X → S
lets us find an open neighbourhoods N ⊆ Cσ(X, S) of χU and V ⊆ X of x such that
ev(N × V ) = {1}. Because ev({χU} × V ) = {1} we have V ⊆ U . We claim that V b U .

To verify this let W = {Wi}I be an open covering of U . Write W =
⋃
IWi and form

the associated topology ω on C(X, S) as discussed above. By the assumption that the given
topology σ is exponential we have using Lemma 0.10 that σ ⊆ ω. Thus there are indices
i1, . . . , ik ∈ I and open subsets W̃ik ⊆ Wik , k = 1, . . . , n, such that the ω-basic open set

satisfies χU ∈ 〈W̃i1∪· · ·∪W̃ik , {1}〉 ⊆ N . Immediately this gives
⋃n
k=1 W̃ik ⊆

⋃n
k=1 W̃ik ⊆ U .

On the other hand ev(〈W̃i1 ∪ · · · ∪ W̃ik , {1}〉 × V ) = {1} implies that V ⊆
⋃n
k=1 W̃ik . We

may conclude that V b U .

With this established we have completed the proof of Theorem 0.6.

Remark Retain the assumptions of Propsition 0.11. Under the bijection C(X, S) ∼= OX ,
we can show that the open sets in the unique expontial topology are exactly the Scott-open
subsets of the lattice OX . In particular the so-called Scott topology on OX is the unique
expontial topology, and this is exactly the Isbell topology on C(X, S). Of course this is also
the natural topology. �

Outlook:

Definition 5 Let Y be a fixed space.

(1) A space X is said to be Y -consonant if the compact-open and Isbell topologies on
C(X, Y ) coincide.

(2) A space X is said to be Y -concordant if the natural and Isbell topologies on C(X, Y )
coincide.

(3) A space X is said to be Y -harmonic if it is both Y -consonant and Y -concordant.

The space X is said to be consonant if it is Y -consonant for each space Y , and concordant
if it is Y -concordant for each space Y . �

Proposition 0.12 The following statements about a space X are equivalent.

(1) X is consonant.

(2) X is both S-consonant and S-concordant.

(3) X is S-consonant.

If X is Tychonoff then the conditions (1)− (3) above are equivalent to X being R-consonant.

Eg. The Sorgenfrey line is not consonant. Q is not consonant. Current research is interested
in understanding and characterising the consonant and concordant spaces. For instance it is
know that every Čech complete Tychonoff space is consonant. For example the irrationals
P ∼= Nω are consonant but not concordant.
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